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Abstract. The superstatistics approach recently introduced by Beck [C. Beck and E.G.D. Cohen, Physica
A 322, 267 (2003)] is a formalism that aims to deal in a unifying way with a large variety of complex
nonequilibrium systems, for which spatio-temporal fluctuations of one intensive variable (“the temperature”
1/β) are supposed to exist. The intuitive explanation provided by Beck for superstatistics is based on the
ansatz that the system under consideration, during its evolution, travels within its phase space which is
partitioned into cells. Within each cell, the system is described by ordinary Maxwell-Boltzmann statistical
mechanics, i.e., its statistical distribution is the canonical one e−βE, but β varies from cell to cell, with
its own probability density f(β). In this work we first address that the explicit inclusion of the density of
states in this description is essential for its correctness. The correction is not relevant for developments of
the theory, but points to the fact that its correct starting point, as well its meaning, must be found at
a more basic level: the pure probability product rule involving the intensive variable β and its conjugate
extensive one. The question therefore arises how to assign a meaning to these probabilities for each specific
problem. We will see that it is easily answered through Bayesian analysis. This way, we are able to provide
an interpretation for f(β), that was not fully elucidated till now.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 02.50.-r
Probability theory, stochastic processes, and statistics – 02.50.Cw Probability theory – 02.50.Tt Inference
methods

1 Introduction

The superstatistics approach recently introduced by
Beck [1] is a formalism that aims to deal in a unifying way
with a large variety of complex nonequilibrium systems,
for which spatio-temporal fluctuations of one (or possi-
bly more) intensive variables (“the temperature” 1/β) are
supposed to exist. These fluctuations reverberate on the
conjugate extensive variable (“the energy” E): its sta-
tistical distribution departs from the simplest canonical
distribution. This formalism can accommodate, in princi-
ple, a multitude of empirically found anomalous statisti-
cal distributions: power-laws (indeed, they were the orig-
inal motivation for developing this formalism), stretched
exponentials, etc. The literature about superstatistics is
quickly increasing: the formalism, so far, has been used
to interpret data from fluid turbulence [2–6], random ma-
trix theory [7], astrophysics [8,9], just to mention some
applications.

The intuitive explanation provided by Beck for su-
perstatistics is based on the ansatz that the system un-
der consideration, during its evolution, travels within its
phase space which is partitioned into small cells. Within
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each cell, the system is described by ordinary Maxwell-
Boltzmann statistical mechanics, i.e., its statistical distri-
bution is the canonical one e−βE, but temperature-hence
β-varies from cell to cell. Alternatively, one can think of β
as uniform throughout the whole phase space, but varying
in time. The resulting, measurable statistics is therefore
an average over the statistical distribution for β, f(β):

P (E) =
∫

e−βEf(β)dβ. (1)

This is the interpretation of superstatistics usually pro-
vided for didactical purposes [2]. For the sake of accuracy,
Beck pointed it out that equation (1) is not properly nor-
malized, and that a better way of writing it should be

P (E) =
∫

e−βE

Z(β)
f(β)dβ, Z(β) =

∫
e−βEdE (2)

so that e−βE/Z(β) is a proper probability density. The
expressions (1) and (2) are referred to as respectively type-
A and type-B superstatistics. It is clear, however, that
this is just tantamount to a redefinition of f(β) between
equations (1) and (2). So, we will refer just to equation (1)
in the following.
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Equation (1) has the merit of being simple and sug-
gestive. Unfortunately, in this form, it is not correct. Let
us see why: in a canonical ensemble whose phase space is
(q,p), the probability for the system to be found within
the small volume dq dp is

P (q,p) ∝ e−βH(q,p)dqdp. (3)

In order to compare equations (1) and (3) we need to con-
vert the latter to a function of energy E: it is necessary
a transformation of variables that introduces the density
of states at energy E, ω(E): the Jacobian of the transfor-
mation ([10], Chap. 7). ω(E) does not appear into equa-
tion (1) (nor in the partition function Z in equation (2),
as it should be) and prevents this formula to be useful
for dealing even with the simplest Gaussian case. In fact,
the choice E = 1/2 x2, f(β) = C(β0) δ(β − β0), with
β0 fixed constant and δ Dirac delta, does not lead to a
Gaussian distribution because of an extra x factor coming
from the Jacobian of the transformation E → x.

Consistency may only reappear under the hypothesis
that each element of the ensemble is evolving on a hyper-
surface of constant energy, H = E, hence ω(E) is constant
and may be safely omitted from the integral. But this is
not compatible with the canonical ensemble picture. The
presence or absence of the density of states is therefore
trivial mathematically in such equations as equations (1)
or (2), but has a great conceptual importance.

For practical purposes, the situation is, however, not
so much serious: equation (1) is actually never used when
moving to actual computations, nor by Beck himself. The
correct formulation of superstatistics is as follows: let us
consider a scalar variable χ we are interested in. Super-
statistics assumes there exists a conjugate variable βχ such
the sampling distribution for χ depends upon βχ as well:
p(χ) ≡ p(χ, βχ). The joint probability is then factored
into the conditional probability for χ and the marginal
probability for βχ:

p(χ, βχ) = p(χ|βχ) × p(βχ)

→ p(χ) =
∫

p(χ|βχ) × p(βχ)dβχ. (4)

The second line in equation (4) yields the marginal prob-
ability for getting χ regardless of the value for βχ. The
Gaussian case for p(χ|βχ) leads to

p(χ) =
∫

1√
2πβ2

χ

exp
(
−1

2
χ2

β2
χ

)
× p(βχ)dβχ (5)

and in this form superstatistics is ordinarily used. Beck
himself introduced superstatistics through this form in his
first work on the subject ([11], Eq. (15)). In that paper he
derived superstatistics from a dynamical realization of the
underlying stochastic process, through a Langevin equa-
tion. It is well known that an ordinary Langevin equation
for a generalized “velocity” variable u yields a stationary
Gaussian distribution for u, which can formally be asso-
ciated to an exponential for the “energy” W through the

relation W = u2/2 [12,13]. However, the identification is
only formal, since all formulas are still written in the “ve-
locity” (phase) space, not in the energy space.

At this stage, any connection with thermodynamics
has disappeared; equation (4) quantifies simply a logical
relationship between probabilities. As such, the analytical
form of both terms appearing in equation (4) is no longer
constrained, nor for p(χ|βχ) itself: it not even needs to be
an exponential. The relationship between χ and βχ may be
described by a variety of analytical expressions, of which
the Gaussian case used in equation (5) is just a particular
choice-although there are several reasons to endowe it with
a special status. The precise form for p(χ|βχ) is usually
not known beforehand, as instead implied in equation (1),
but should be worked out case-by-case on the basis of the
information at hand.

In studies based upon superstatistics a large interest is
placed upon the functional form for p(βχ), that is critical
is determining the final p(χ): the original choice [1] was
a chi-squared distribution, that leads to a power-law for
p(χ). A log-normal function appears a plausible candidate
in turbulence studies [5,14,15], and other distributions
were also studied [2,16–18]. At this stage, it is difficult
to choose p(βχ) on the basis of some prior theory, and one
is led mainly by the sought agreement a posteriori with ex-
periment. Hence, no connection is drawn between p(χ|βχ)
and p(βχ) distributions: the former is postulated or de-
duced in advance of the problem, the latter guessed on the
basis of the sought agreement with the experiment. But
equation (4) requires χ and βχ to be related for p(χ|βχ)
not to become trivial: p(χ|βχ) ≡ p(χ). In equation (5),
e.g., βχ is the variance for the distribution of χ. In the
past years, Lavenda and coworkers attacked fairly harshly
Beck’s works and pointed it out that a probabilistic de-
scription of statistical mechanics shows that fluctuations
in energy and temperature are not independent [19–23]:
thermodynamic conjugate variables cannot be measured
with infinite precision, errors in the measurement of one
variable can be made vanishingly small only at the expense
of total ignorance about the other. But finite errors in the
estimate of a variable translate into a statistical distribu-
tion for its guessed value. Hence, not only statistical dis-
tribution for both variables arise naturally, but also they
must be related to each other. (Incidentally, an embryonal
version of this statement may be found in the paper [24]
— see discussion around equation (13) — written by this
author without any prior knowledge of Lavenda’s work).

At this point, a coherent picture is starting to emerge,
enframed by the two facts that we are going to summarize:
I) p(χ|βχ) is not an universal function as postulated into
equation (1); it is a distribution that must be determined
on the basis of the information that we have about the
specific problem we are going to solve; II) p(βχ), too, is not
known in advance. Any prior knowledge we have about it
must be modified in the light of experiment, that involves
sampling on the conjugate variable. Notice that what we
have just given here is nothing but a restatement of Bayes’
formula (see, e.g., Ref. [25], Eq. (1.3); or [26], Eq. (4.3)).
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From these two facts there follows a consideration: the
emphasis is being naturally shifted from an “objective”
picture (the system travels across different parts of its
phase space) to a “subjective” one. While in equation (1)
one has been emphasizing f(β) to be a faithful description
of a background truly acting stochastically, the lines above
seem to suggest that a more productive way of looking at
equations (4), (5) is to consider them not descriptive of a
microscopical stochastic dynamics. Rather, they are rep-
resentative of our state of knowledge about the system.
The spreading of the statistical distributions over finite
supports is merely a measure of how much our ignorance
about fine details of the system (e.g., initial conditions, or
boundary conditions) precludes us to univocally assigning
numerical values to the quantities we want to measure.

What we have been describing in the lines above is
just the Bayesian approach to inference as explained in
his monograph by Jaynes [26], that will be our reference
here (Bayesian method itself is, of course, much older, and
is traced back essentially to Laplace). Bayesian proba-
bility theory is a method for drawing inferences using a
well-defined set of logical axioms and rules (Cox’s rules).
Bayesian theory does not assign probabilities the status
of physical entities: there does not exist anything like a
random variable in the sense of a quantity that, objec-
tively, picks randomly its value from an ensemble of possi-
ble choices. Rather, a probability represents our degree of
belief about the value of the quantity under consideration,
determined by our state of knowledge. This apparently
may lead to purely subjective inferences, but once the
state of knowledge has been mathematically quantified, it
is perfectly legitimate to make quantitative comparisons
between different predictions. Internal rules to the theory
assure that, when logically equivalent states of knowledge
are given, they lead to the same final results. A different,
opposite, approach is the “orthodox” one, where probabil-
ities are thought to represent true physical properties of
the system studied, and can be quantified in the limit-of-
frequency sense. Intermediate positions are also possible.
A monograph about the foundational issues of the concept
of probability in statistical physics is Guttmann [27].

In this paper we will carry on an interpretation of
superstatistics using Bayesian theory. We will show how
the probabilities entering equation (4) are given a pre-
cise formulation once the form of the information we have
about the system is quantitatively established. We will
show how, this way, one is able to recover explicitly equa-
tion (4) for p(βχ) Gamma and a lognormal distributions,
i.e., the two most important practical cases.

2 Recovering statistical distributions

Our task is recovering a probability distribution for χ on
the basis of the measurable interaction of the system with
its environment. By “measurable interaction” we mean
that we expect the fine details of the interaction to es-
cape or to be of no relevance to our measurements, and
only coarse quantities may be retained, usually in the form

of moments of the distribution function. Since in equa-
tions (1), (5) only quantities proportional to moments up
to the second (β, βχ) do appear, we will stop to this or-
der. We label the second moment with β2

χ. Furthermore,
through a suitable shift of the reference frame, e.g., suit-
ably choosing the origin of axes, we can always make the
first moment to vanish. We stress that, up to this stage, βχ

is not a measured quantity. Our state of knowledge about
the system tells us that it must be taken into account when
deriving the probability distribution for χ, but its precise
value is of no concern to us. It is a nuisance parameter
that will eventually be eliminated through marginaliza-
tion (Eq. (4)).

Our task is that of giving explicit expressions for the
two densities appearing in equation (4). Getting an ex-
pression for p(χ|βχ) is straightforward: by construction,
the only information we have about it are its first two mo-
ments. The problem of transferring information uniquely
into a probability is a central one in Bayesian theory, and
is solved through a variety of approaches. Among them,
one of the best known and most used is the Maximum
Entropy Principle ([26], Chap. 11): it tells us that the
distribution to be preferred among those satisfying this
constraint is given by solving the variational equation

δ

(∫
p ln

(
p

µ

)
dχ +

1
2β2

χ

∫
pχ2dχ

)
= 0 (6)

with
∫

pdχ = 1 and µ(χ) is a ‘measure’ function, needed to
make p/µ invariant under a change of variables. It is easy
to show that µ(χ) is the prior distribution for χ, in the lack
of any other information. This can be spotted by solving
equation (6) without even the term proportional to 1/β2

χ:
the result is p ≡ µ. But in absence of any information
we have no reason to prefer a value of χ over any other,
hence µ must be a constant [the problem of infinite limits
of integration in (6) is bypassed by noticing that no finite
physical system may spread over infinite intervals. Hence,
the integral must have some-possibly very large-cutoff].
The final result from equation (6) is

p(χ |βχ ) =

√
1

2πβ2
χ

exp
(
− χ2

2β2
χ

)
. (7)

On the basis of the Maximum Entropy Principle, equa-
tion (7) is the most general (i.e., less informative) statis-
tical distribution compatible with the constraint over its
second moment. Notice that the functional to be max-
imized subject to constraints is the Shannon entropy,
− ∫ p ln p dx. Due to its analytical structure, any con-
straint that can be written in the form of an average over p
automatically leads to a probability density that is in the
form exp(f(x)). Hence, the leading role played by Gaus-
sian distributions is easily explained.

Let us now investigate the second term, p(βχ). βχ was
introduced on the basis of some measurement done, i.e.,
some data collected. Hence, the Bayes formula is needed
([25], Eq. (1.3); [26], Eq. (4.3)):

p(βχ |D ) =
p(D |βχ ) × p(βχ |I )∫

p(D |βχ ) × p(βχ |I )dβχ
. (8)
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The meaning of equation (8) is: the probability for βχ con-
ditional to some information D is given by the probability
of measuring D for fixed βχ, p(D|βχ), multiplied by the
prior (i.e., in absence of the information D) probability
we assign to βχ, p(βχ|I). All must be suitably normalized
to yield a proper probability.

The physics enters through D. In his first paper on the
subject [11], Beck makes the hypothesis that the “kinetic
energy” 1/2χ2 may be written as the sum of three inde-
pendent Kolmogorov velocities: 1/2χ2 = 1/2

∑3
i=1 ξ2

i . We
can generalize this ansatz to an arbitrary number m of
components:

χ2 =
m∑

i=1

ξ2
i . (9)

In order to estimate βχ we need to have performed some
measure of the energy of the system or, from equation (9),
of the m velocity components. Hence p(D|βχ) stands for
the joint probability density:

p(D |βχ ) =
(

1
2πβ2

χ

)m/2 m∏
i=1

exp
(
− ξ2

i

2β2
χ

)
. (10)

The factorization comes straightforwardly by the hypoth-
esis of the ξi to be independent components, and the
Gaussian statistics arises for the same reasons the led to
equation (7).

In equation (8) only probability densities do enter, but
we can convert p(D|βχ) to a true probability by multiply-
ing both numerator and denominator by the volume ele-
ment

∏
i

dξi. This probability must be invariant under the

change of variables:

(ξ1, ξ2, . . .) → (X, θ2, . . .),

where θI (i = 2, . . ., m) are angle coordinates and∑m
i=1 ξ2

i → X . We arrive to

p(D |βχ ) ∝
(

1
2πβ2

χ

)m/2

(X)m/2−1 exp
(
− X

2β2
χ

)
. (11)

The factor Xm/2−1 comes from the Jacobian of the trans-
formation. Other constant terms are not relevant to our
purposes, since they are canceled between numerator and
denominator.

There remains, finally, the prior probability p(βχ|I):
the Jeffreys rule ([26], Chap. 12.4) states that, in absence
of whatsoever information, the prior probability for a pos-
itive definite quantity h must be taken as p(h|I)∝ 1/h: it is
a necessary consequence of the invariance of our knowledge
about h after transformation of the scales of the problem
(For the unfamiliar reader, a short proof of this result is
given in the Appendix).

Inserting everything into equation (8) yields

p(βχ|D) =
Xm/2

2m/2−1Γ (m/2)
1

βm+1
χ

exp
(
− X

2β2
χ

)
. (12)

The quantity X is arbitrary but, for a thermodynami-
cal system, with overwhelming probability, any measure

will yield approximately the same, most likely value:
X = X̄([10], Par. 7.2). In order to get a closer comparison
with Beck’s results, let us perform the change of variables:
X̄/2 → 1/b0, 1/β2

χ → b. After replacing equations (7),
(12) into (4) we get, finally

p(χ) =
∫

1√
2πΓ (m/2)

1

b
m/2
0

b
m−1

2

× exp
(
− b

b0

)
exp

(
−b

χ2

2

)
db. (13)

which is the convolution of a Gaussian with a Gamma dis-
tribution. This yields, as known, a power law for p(χ) [11].
Notice that, with respect to original Beck’s guess, there is
a supplementary “1/2” in the exponent for b: m/2 –1/2
rather than m/2 – 1. This comes from our choice of prior
probability p(βχ|I). Beck’s ansatz is consistent, instead,
with p(βχ|I) = const. (although Beck himself, later, re-
covered the m/2 –1/2 using B-superstatistics rather than
A-superstatistics [2]).

The other relevant, often used distribution for p(βχ)
is the log-normal one [2]. This may be recovered from the
ansatz that the variable χ2 be written as a product of m
independent ξ variables:

χ2 =

(∏
i

ξi

)1/m

→ ln
(

χ2

cβ2
χ

)
=

1
m

∑
i

ln
(

ξi

cβ2
χ

)
.

(14)
The parameter c is chosen on the basis of the con-
straint that ln(χ2/cβ2

χ) be zero-mean: c = exp(−γE)/2,
with γE ≈ 0.577. . . Hence ln(ξi/cβ2

χ) are zero-mean, too.
Again, the only information we postulate to have is about
the second moment, and this leads (again on the basis of
Maximum Entropy Principle) to

p(ξi|βχ) =
1√

2πs2
exp

[
−1

2

(
ln(ξi/cβ2

χ)
)2

s2

]
. (15)

The variance s is assigned:

s2 =

〈(
ln
(

ξi

cβ2
χ

))2
〉

→ s2 =
1
m

∑
i

〈(
ln
(

ξi

cβ2
χ

))2
〉

=

〈(
ln
(

χ2

cβ2
χ

))2
〉

= γ2
E +

π2

2
+(ln(2))2+γE ln(4) + ln(c) [2γE + ln(4c)]=

π2

2
(16)

where the average is done over the Gaussian probability
density for χ (Eq. (7)).

On the basis of the same reasoning done before, for a
thermodynamical systems, all the ξi are almost constant
and identical: ξi/c ≡ β2

0 , and equation (8) becomes

p(βχ|D) =
( m

2πs2

)1/2

exp

⎡
⎣− m

2s2

(
ln
(

βx

β0

)2
)2
⎤
⎦ 1

βχ
.

(17)



F. Sattin: Bayesian approach to superstatistics 223

Inserting this expression into equation (4) together with
(7), and with the replacements 1/β2

χ → b, 1/β2
0 → b0,

leads to

p(χ) =
√

m

2πs

∫
db

1
b1/2

exp
(
− b

2
χ2

)

× exp

[
− m

2s2

(
ln
(

b

b0

))2
]

. (18)

concluding our derivation.
It is interesting to notice that, independently of the

considerations put forth in this work, the Bayesian method
outlined in this paragraph has already actually put into
practice within superstatistical theory: see the derivation
of statistical distributions from Maximum Entropy Prin-
ciple done by Reynolds [5] and by the present author [17].

3 Concluding remarks

Beck’s superstatistics cannot be considered completely
new: the mechanism of superposition of probability densi-
ties to obtain “anomalous” (i.e., non-Gaussian) distribu-
tions is well known in statistics as well in physics (see, e.g.,
[28], Par. 14.4): indeed, the first suggestion to a formula
like (1) came from the paper [29]. Lavenda and Dunning-
Davies [30] claim that even the results of this latter paper
should be traced back to earlier work. It is possible that
these results have been actually discovered and used sev-
eral times independently by several researchers in the past
(see, e.g., [31]). We think, instead, that Beck’s attempt of
finding a common intuitive foundation for a large variety
of apparently disconnected experimental results, is valid
and promising, and deserves to be further developed. We
hope that the work presented in this paper might be a
contribution to superstatistics theory.

This work has two goals: first, the original interpreta-
tion (1) is found to need amendments. Therefore, it has
been pointed out that the more correct starting point is
the product rule, equation (4) (Notice that we are not
claiming originality, here: equation (4) was already sug-
gested by Beck). An interpretation of the probabilities
there appearing within the Bayesian picture allows us to
recover almost effortless the main results of superstatistics
theory. We consider putting the emphasis on the Bayesian
approach for all of the probabilities appearing into equa-
tion (4) a distinctive feature of this work. It allowed to
address a fundamental issue otherwise not extensively in-
vestigated till now, namely the mechanisms through which
statistical distributions for the intensive variable β arise
from within the systems studied.

Part of this paper was stimulated by discussions with L.
Salasnich. Professors Beck and Lavenda made useful sugges-
tions, although not necessarily sharing the contents of the pa-
per. This work was supported by the Euratom Communities
under the contract of Association between EURATOM/ENEA.
The views and opinions expressed herein do not necessarily re-
flect those of the European Commission.

Appendix: The Jeffrey’s prior

A concise derivation of Jeffrey’s prior may be found, e.g.,
in Sivia ([25], p. 112). For the reader’s sake, we provide
here essentially a copy of that result.

We wish to assign a functional form to the PDF p(h|I),
where h represents the quantity of interest and I stands
for any other information related to the problem. We have
not any information about h but for the fact that it must
be positive: h > 0.

Gross ignorance about h means complete lack of
knowledge about scales involved in the problem, or, equiv-
alently, invariance of the probability: in fact, a change of p
as a consequence of a change of scales (which could simply
be changing the units with which we measure h) means
automatically that we have some information about it, ex-
plicitly denied from the outset. A change of scales corre-
sponds to a stretching or shrinking of h. Hence, the prob-
ability must fulfil:

p(h|I)dh = p(αh|I)d(α h), α > 0

and this can only be satisfied if

p(h|I) ∝ 1/h

which concludes the proof.
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